Всего материалов в каталоге: 1348
Показано материалов: 46-60
Страницы: « 1 2 3 4 5 6 ... 89 90 »

Небольшое тело пустили вверх по наклонной плоскости, составляющей угол a = 15° с горизонтом. Найти коэффициент трения, если время подъема тела оказалось в h = 2,0 раза меньше времени спуска.


На наклонную плоскость, составляющую угол α с горизонтом, поместили два соприкасающихся бруска 1 и 2 (рис ). Массы брусков равны m1 и m2, коэффициенты трения между наклонной плоскостью и этими брусками — соответственно k1 и k2, причем k1 > k2. Найти: а) силу взаимодействия между брусками в процессе движения; б) минимальное значение угла α, при котором начнется скольжение.


В установке (рис. ) массы тел равны m0, m1 и m2, массы блока и нитей пренебрежимо малы и трения в блоке нет. Найти ускорение а, с которым опускается тело m0, и силу натяжения нити, связывающей тела m1 и m2, если коэффициент трения равен k.


Аэростат массы m начал опускаться с постоянным ускорением w. Определить массу балласта, который следует сбросить за борт, чтобы аэростат получил такое же ускорение, но направленное вверх. Сопротивлением воздуха пренебречь.


Найти модуль и направление силы, действующей на частицу массы m при ее движении в плоскости xy по закону x = A sin wt, y = B cos wt.


Твердое тело вращается с постоянной угловой скоростью w0 = 0,50 рад/с вокруг горизонтальной оси AB. В момент t = 0 ось AB начали поворачивать вокруг вертикали с постоянным угловым ускорением b0 = 0,10 рад/с2. Найти модули угловой скорости и углового ускорения тела через t = 3,5 с.


Круглый конус с углом полураствора a = 30° и радиусом основания R = 5,0 см катится равномерно без скольжения по горизонтальной плоскости, как показано на рис. Вершина конуса закреплена шарнирно в точке О, которая находится на одном уровне с точкой С - центром основания конуса. Скорость точки С равна v = 10,0 см/с. Найти модули: а) угловой скорости конуса; б) углового ускорения конуса.


Два твердых тела вращаются вокруг взаимно перпендикулярных пересекающихся осей с постоянными угловыми скоростями w1 = 3,0 рад/с и w2 = 4,0 рад/с. Найти угловую скорость и угловое ускорение одного тела относительно другого.


Цилиндр катится без скольжения по горизонтальной плоскости. Радиус цилиндра равен r. Найти радиусы кривизны траекторий точек A и В (рис. ).


Точка A находится на ободе колеса радиуса R = 0,50 м, которое катится без скольжения по горизонтальной поверхности со скоростью v = 1,00 м/с. Найти: а) модуль и направление ускорения точки A; б) полный путь s, проходимый точкой A между двумя последовательными моментами ее касания поверхности.


Твердое тело начинает вращаться вокруг неподвижной оси с угловым ускорением b = b0cosф, где b0 — постоянный вектор, ф — угол поворота из начального положения. Найти угловую скорость тела в зависимости от угла ф. Изобразить график этой зависимости.


Твердое тело вращается вокруг неподвижной оси так, что его угловая скорость зависит от угла поворота ф по закону w = w0 - аф, где w0 и а — положительные постоянные. В момент t = 0 угол ф = 0. Найти зависимости от времени: а) угла поворота; б) угловой скорости.


Твердое тело вращается, замедляясь, вокруг неподвижной оси с угловым ускорением b ~ Vw, где w — его угловая скорость. Найти среднюю угловую скорость тела за время, в течение которого оно будет вращаться, если в начальный момент его угловая скорость была равна w0. 


Твердое тело начинает вращаться вокруг неподвижной оси с угловым ускорением b = at, где a = 2,0*10^-2 рад/с3. Через сколько времени после начала вращения вектор полного ускорения произвольной точки тела будет составлять угол ф = 60° с ее вектором скорости?


Твердое тело вращается вокруг неподвижной оси по закону ф = at - bt3, где а = 6,0 рад/с, b = 2,0 рад/с3. Найти средние значения угловой скорости и углового ускорения за промежуток времени от t = 0 до остановки.