Всего материалов в каталоге: 1348
Показано материалов: 61-75
Страницы: « 1 2 3 4 5 6 7 ... 89 90 »

Снаряд вылетел со скоростью v = 320 м/с, сделав внутри ствола n = 2,0 оборота. Длина ствола l = 2,0 м. Считая движение снаряда в стволе равноускоренным, найти его угловую скорость вращения вокруг оси в момент вылета.


Колесо вращается вокруг неподвижной оси так, что угол ф его поворота зависит от времени как ф = bt2, где b = 0,20 рад/с2. Найти полное ускорение а точки A на ободе колеса в момент t = 2,5 с, если скорость точки A в этот момент v = 0,65 м/с.


Частица A движется по окружности радиуса R = 50 см так, что ее радиус-вектор r относительно точки О (рис. ) поворачивается с постоянной угловой скоростью w = 0,40 рад/с. Найти модуль скорости частицы, а также модуль и направление ее полного ускорения.


Частица движется равномерно со скоростью v по плоской траектории y(x). Найти ускорение частицы в точке x = 0 и радиус кривизны траектории в этой точке, если траектория: а) парабола y = ax2; б) эллипс (x/a)2 + (y/b)2 = 1, где a и b — постоянные.


Точка движется по плоскости так, что ее тангенциальное ускорение wτ = аτ , а нормальное ускорение wn = bt4, где а и b — положительные постоянные, t — время. В момент t = 0 точка покоилась. Найти зависимости от пройденного пути s радиуса кривизны R траектории точки и ее полного ускорения w.


Частица движется по дуге окружности радиуса R по закону l = a sin ωt, где l — смещение из начального положения, отсчитываемое вдоль дуги, a и ω — постоянные. Положив R = 1,00 м, а = 0,80 м и ω = 2,00 рад/с, найти: а) полное ускорение частицы в точках l = 0 и ±a; б) минимальное значение полного ускорения wмин и смещение lm, ему соответствующее.


Точка движется по дуге окружности радиуса R. Ее скорость v ~ Vs, где s — пройденный путь. Найти угол между векторами скорости и полного ускорения как функцию s.


Точка движется, замедляясь, по окружности радиуса R так, что в каждый момент ее тангенциальное и нормальное ускорения одинаковы по модулю. В момент t = 0 скорость точки равна v0. Найти зависимость: а) скорости точки от времени и пройденного пути s; б) полного ускорения точки от v и s.


Точка движется по окружности со скоростью v = at, где a = 0,50 м/с2. Найти ее полное ускорение в момент, когда она пройдет n = 0,10 длины окружности после начала движения.


Частица A движется в одну сторону по траектории (рис. ) с тангенциальным ускорением aт = ат, где a — постоянный вектор, совпадающий по направлению с осью X, а т — орт, связанный с частицей A и направленный по касательной к траектории в сторону возрастания дуговой координаты. Найти скорость частицы как функцию x, если в точке x = 0 ее скорость равна нулю.


Частица движется в плоскости xy со скоростью v = ai + bxj, где i и j — орты осей X и Y, a и b — положительные постоянные. В начальный момент частица находилась в начале координат. Найти: а) уравнение траектории частицы y(x); б) радиус кривизны траектории как функцию х.


Воздушный шар начинает подниматься с поверхности земли. Скорость его подъема постоянна и равна v0. Благодаря ветру шар приобретает горизонтальную компоненту скорости vx = ay, где a — постоянная, у — высота подъема. Найти зависимости от высоты подъема: а) сноса шара x(y); б) полного, тангенциального и нормального ускорений шара.


Из пушки выпустили последовательно два снаряда со скоростью v0 = 250 м/с: первый — под углом ф1 = 60° к горизонту, второй — под углом ф2 = 45° (азимут один и тот же). Найти интервал времени между выстрелами, при котором снаряды столкнутся друг с другом.


Пушка и цель находятся на одном уровне на расстоянии 5,10 км друг от друга. Через сколько времени снаряд с начальной скоростью 240 м/с достигнет цели?


Шарик падает с нулевой начальной скоростью на гладкую наклонную плоскость, составляющую угол a с горизонтом. Пролетев расстояние h, он упруго отразился от плоскости. На каком расстоянии от места падения шарик отразится второй раз?